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Multipixel Retrieval of Structural and Optical
Parameters in a 2-D Scene With a Path-Recycling

Monte Carlo Forward Model and a
New Bayesian Inference Engine
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Abstract—Physics-based retrievals of atmosphere and/or sur-
face properties are generally multi- or hyperspectral in nature;
some use multi-angle information as well. Recently, polarization
has been added to the available input from sensors and ac-
cordingly modeled with vector radiative transfer (RT). At any
rate, a single pixel is processed at a time using a forward RT
model predicated on 1-D transport theory. Neighboring pixels are
sometimes considered but, generally, just to formulate statistical
constraints on the inversion based on spatial context. Herein,
we demonstrate the power to be harnessed by adding bona fide
multipixel techniques to the mix. We use a forward RT model
in 2-D, sufficient for this demonstration and easily extended to
3-D, for the response of a single-wavelength imaging sensor. The
data, an image, is used to infer position, size, and opacity of an
absorbing atmospheric plume somewhere in a deep valley in the
presence of partially known/partially unknown aerosol. We first
describe the necessary innovation to speed-up forward multidi-
mensional RT. In spite of its reputation for inefficiency, we use
a Monte Carlo (MC) technique. However, the adopted scheme is
highly accelerated without loss of accuracy by using “recycled”
MC paths. This forward model is then put to work in a novel
Bayesian inversion adapted to this kind of RT model where it is
straightforward to trade precision and efficiency. Retrievals target
the plume properties and the specific amount of aerosol. In spite
of the limited number of pixels and low signal-to-noise ratio, there
is added value for certain nuclear treaty verification applications.

Index Terms—Algorithm design and analysis, Bayesian
methods, computational efficiency, computational geometry,
hyperspectral imaging, Markov processes, maximum a posteriori
estimation, radiometry, remote monitoring, signal processing
algorithms, surface topography.

I. INTRODUCTION, CONTEXT, AND OVERVIEW

O PERATIONAL methods in the remote sensing of at-
mospheric and surface properties using physics-based
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techniques [1] have, at a minimum, the same limitations as the
adopted forward model for the signal. Such a model is required
to translate measured radiances into inherent structural, optical,
physical, and chemical properties. However, its natural form is
to predict radiances for given scene properties. The adopted
inversion method that reverses this connection will introduce
further limitations, as will instrument noise, and so on.

In retrievals using the UV through microwave spectrum, one
endemic limitation follows from overly simplified physical and
geometrical assumptions in the radiative transfer (RT) under-
lying the sensor signal prediction. This is most problematic
in the visible (VIS) and near-infrared (NIR) spectral regions
as they are dominated by atmospheric scattering and surface
reflection. These radiation transport processes indeed make the
prevailing RT highly nonlocal in the physically intuitive as well
as mathematical senses of the word.

When it comes to operational remote sensing missions, data
throughput volume considerations weigh heavily in favor of
straightforward pixel-by-pixel processing, using the multi- or
hyperspectral dimension of the data as best possible. When
available, multi-angle information and, more and more fre-
quently, polarimetric diversity will also be brought to bear
on the physics-based remote sensing problem. However, once
isolated from any spatial context, the natural assumption for
the pixel-scale RT model is horizontal uniformity, i.e., the
optical medium is assumed to be an infinite plane-parallel slab
with, at most, some vertical structure. This assumption leads
immediately to the textbook case of 1-D RT. Very conveniently
for computational considerations, the azimuthal dependence is
then amenable to a Fourier series decomposition with each
mode being independent of the others [2]. Nature, however,
is 3-D and complex—as demonstrated by almost every remote
sensing image captured since the dawn of the technology! This
disconnect between the conceptual model for the remote sens-
ing signal and the reality that produces it can be a significant
liability for the inverse problem.

There are two basic kinds of 3-D RT effect to worry about
when using retrieval algorithms grounded in 1-D RT [3]. First,
there is the effect of small-scale (unresolved) variability that
dominates the 1-D RT model error when the observation scale
(pixel size) is large. Second, there is the “pixel-adjacency”
effect that dominates the 1-D RT model error when the obser-
vation scale is small. For the sake of argument, we can assume
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Fig. 1. Schematic representation of the optical medium. We show here the terrain with variable height from (3) at the lower boundary and the upper domain
boundaries in (4) and (5). An instance of the absorbing gaseous plume is also drawn. For illustration, four solar rays are cast from the overhead direction, all of
which reach a small hypothetical detector on the right-hand side and therefore qualify for path recycling. Two of these particular rays intersect the plume region
in this instantiation. Dotted areas are the (prior) bounds for the Bayesian retrieval. To the right, with the same convention, are the vertical profiles of aerosol
extinction; the reference value is in solid black. The polar plot at the first collision of path #2 illustrates the adopted aerosol phase function. See Fig. 2 for details.

that the vertical structure of the medium, including the surface,
is perfectly known under any given pixel. The adjacency effect
results from the near proximity of other pixels where the surface
and/or atmosphere have a different structure and thus excite net
horizontal fluxes, precisely what is neglected in 1-D RT. Much
research into these topics has been performed primarily in
3-D cloudy scenes (see [3], [4], and references therein). Scenar-
ios where the aerosol and molecular atmosphere is horizontally
uniform while the surface, assumed flat, is not have also been
investigated extensively (see [5]–[19], and more references
therein). Topography effects have been studied as well [20],
among others. In all of these situations, a common question is:
How far the 3-D effects can be sensed? In other words, what is
the scale that divides the aforementioned “small” and “large”
pixel sizes? It is fair to say that, overall, much less has been done
about mitigating either large- or small-scale 3-D RT effects in
current remote sensing operations, let alone applications.

We focus here on the later effect: cross-pixel/adjacency trans-
port. In fact, rather than see this as a nuisance from a 1-D RT
perspective, we take a resolutely 3-D RT perspective and indeed
exploit the effect in a remote sensing problem. This is a radical
departure from mainstream physics-based remote sensing of the
environment where retrieval methods are invariably based on
multi- or hyperspectral analyses of pixel-scale data, or maybe
at a coarser resolution. At any rate, the standard inversion
scheme uses a forward 1-D RT model that optimally reproduces
the purely spectral observations, e.g., MODerate resolution
Imaging Spectrometer [21] data. In some cases, this leads to the
retrieval of a vertical profile in a thermodynamic variable and/or
a chemical composition, e.g., using the Atmospheric Infra-Red
Sounder [22]. In other cases, multi-angle information is brought
to bear, e.g., with the Multi-angle Imaging Spectro-Radiometer
(MISR) [23]. Some of those exploit polarization measurements
as well [24], e.g., the POLarization and Directionality of the
Earth’s Reflectances (POLDER) [25] sensor.

To demonstrate more clearly how new information can be
gained from the 3-D RT point of view, we simulate here a
retrieval of spatial structure using a purely monochromatic but
multipixel technique. This of course calls for a 3-D RT forward
model and an inversion methodology capable of driving it. The
3-D RT model, a Monte Carlo (MC) scheme, uses a specific
parametric representation of the scene. Envision a deep valley
or gorge with a known profile in altitude and reflectivity (see
Fig. 1). This terrain is filled and overlaid with a stratified
scattering atmosphere representative of a typical background
aerosol that is imperfectly known. Somewhere in this canyon,
there is a finite (assumed) uniform gaseous plume made of a
purely absorbing trace gas of interest; also, the plume’s geom-
etry is assumed to be that of a cylinder lying horizontally. The
challenge is to determine the position, diameter, and opacity of
the (admittedly idealized) plume, along with a refined estimate
of the ambient aerosol load, using a single-channel imaging
sensor that captures reflected and scattered sunlight.

This is a scenario of significant interest in nuclear facility
monitoring [26]. Traditionally, gaseous plume remote sensing
is performed in the spectral domain using either NIR or ther-
mal IR (TIR) wavelengths, typically using hyperspectral sen-
sors [26]–[28], among others. In that case spatial information
can only be deduced easily by segmenting the image in the
plane perpendicular to the incoming beam. Vertical profiling
would call for well-calibrated high-resolution TIR data and de-
tailed ancillary information about thermal stratification. Here,
we simply assume that the NIR spectral band of the crude
monochromatic imager has been tuned to an absorption feature
of the targeted gas.

The paper is outlined as follows. In the following Section II,
we describe in precise and general mathematical terms the
forward RT problem that, for simplicity, is cast in two spatial
dimensions, hence just one angular variable. In Section III, the
specific scene geometry is set, optical properties are prescribed,
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and remote sensing unknowns are defined. In Section IV,
the numerical solution using the new “path-recycling” MC
scheme is described in simple algorithmic terms, as well as
in probabilistic terms using measure-theoretical concepts; its
performance is compared with the standard MC method. In
Section V, we describe the inverse transport method, which
uses a Bayesian framework. Full mathematical details are pro-
vided in a companion paper by Bal et al. [29]. Section VI
analyzes the outcome of a representative selection from our
extensive numerical experimentation. We offer our concluding
remarks and an outlook on future work in Section VII.

Appendix A covers certain technical details on MC on path
recycling, starting from the measure-theoretical basis of the
method. Appendix B formalizes the notion of a discrete hier-
archy of forward MC models with varying precision at the cost
of longer or shorter run times, which is key to the Bayesian
analysis.

II. TWO-DIMENSIONAL RT EQUATION AND ASSOCIATED

BOUNDARY CONDITIONS

In steady-state 3-D RT, a monochromatic radiance field I
depends on three spatial variables �r = (x, y, z)T, where z is
customarily taken to be altitude above some reference point,
and an angular variable �Ω, with ‖�Ω‖ = 1, that is usually defined
by two polar coordinates (θ, φ). In the present study, we can
restrict our considerations to 2-D RT without losing the ability
to provide a proof-of-concept in multipixel remote sensing
that exploits cross-pixel radiation transport. Consequently, we
will use just two spatial coordinates �r = (x, z)T and a single
angular variable �Ω(θ) = (sin θ, cos θ)T where θ = 0 is up (in-
creasing z). We should bear in mind that the units for I(�r, �Ω) in
2-D are [photons/s/m/rad] (as opposed to [photons/s/m2/sr] in
the usual 3-D setting).

That said, the general steady-state monochromatic RT equa-
tion for I(�r, �Ω) looks the same in 2-D as in 3-D[
�Ω · ∇+ σ(�r)

]
I = σs(�r)

∫
pv(�r, �Ω

′ → �Ω)I(�r, �Ω′)d�Ω′

+ Qv(�r, �Ω) (1)

for �r ∈ R, an open connected subset of R
2. We have in-

troduced here the extinction, σ(�r), and scattering, σs(�r),
coefficients (still in [m−1]), the phase function pv(�r, �Ω →
�Ω′), and the volume source term Qv(�r, �Ω) (expressed here
in [photons/s/m2/rad]). The phase function (in [1/rad]) is
normalized in such a way that

∫
pv(�r, �Ω → �Ω′)d�Ω′ = 1,

with d�Ω′ = dθ′.
Boundary conditions (BCs) can similarly be expressed in

very general terms. Letting ∂R denote the closed boundary of R
and �n�r its outward normal at �r, with �r-dependent components
(sin θ�n, cos θ�n)

T, we have∣∣∣�Ω · �n(�r)
∣∣∣ I(�r, �Ω)

= α(�r)

∫
�Ω′·�n(�r)>0

ps(�r, �Ω
′ → �Ω)I(�r, �Ω′)�Ω′ · �n(�r)d�Ω′

+
∣∣∣�Ω · �n(�r)

∣∣∣Qs(�r, �Ω) (2)

for �r ∈ ∂R and �Ω(θ), θ ∈ (−π,+π], such that �Ω · �n(�r) < 0.
We have introduced here the surface’s albedo α(�r) and its phase
function ps(�r, �Ω → �Ω′) (in [1/rad], like its volume counterpart),
with �Ω · �n(�r) > 0, to describe bi-directional reflection, as well
as the boundary source term Qs(�r, �Ω) (in [photons/s/m/rad]).

We will refer to the union of R and ∂R as the “opti-
cal medium,” and to (R ∪ ∂R)× (−π,+π] as the “transport
space.”

Equations (1) and (2) determine mathematically the forward
RT problem, once R and all the coefficients and phase functions
(“optical properties”) are specified, e.g., as in the next section.
The “flatland” remote sensing problem is to infer quantitative
information about the structure or properties of the optical
medium, given some (generally quite sparse) sampling of the
I(�r, �Ω) field in transport space, typically with �r ∈ ∂R and �Ω ·
�n(�r) > 0 (outgoing radiation). Ideally, the inferred quantities
should be accompanied with an estimate of their uncertainty.

III. SCENE GEOMETRY AND OPTICAL PROPERTIES

Structural and optical quantities, both assumed and held fixed
or parameterized and susceptible to vary, are defined.

A. Terrain and Illumination

Fig. 1 shows a schematic of the optical medium. For simplic-
ity, the lower boundary is represented by

z(x) =
Hsfc

2

(
1− cos3

(
2πx

L

))
,−L/2 ≤ x ≤ +L/2 (3)

where we set L = 2π [km] and Hsfc = 2 [km]. The width-
to-depth aspect ratio of this mirror-symmetric terrain model
is L/Hsfc = π. More complex asymmetric terrains, including
Digital Elevation Models (DEMs) could be used in straightfor-
ward generalizations of our forward RT model.

To form ∂R, this lower boundary is complemented by a “sky”
defined as

{z = Hsky;−L/2 ≤ x ≤ +L/2} (4)

where we set Hsky = 4 [km], and by lateral boundaries

{x = ±L/2;Hsfc < z < Hsky} (5)

where we apply open/absorbing BCs. We thus set α(z) = 0
for Hsfc < z ≤ Hsky in (2). This assumption contrasts with the
commonly used periodic lateral BCs over the cell −L/2 < x <
+L/2 associated an absorbing BC only at z = Hsky. However,
this simplification does not affect the outcome of the present
proof of concept.

Again for simplicity, we emulate scene illumination by an
overhead sun (solar zenith angle, θ0 = π [rad]) by setting
Qv(x, z, θ) ≡ 0 in (1) and

Qs(x, z, θ)=

{
F0δ(θ−θ0), if z=Hsky, and |x|<2.5
0, otherwise

(6)

in (2). The constraint on x (no light emitted from 2.5 < |x| <
L/2 = π) reduces the impact of the simplifying assumption of
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open (rather than periodic) lateral BCs. Here, F0 denotes the
2-D counterpart (measured in [photons/s/m]) of the incoming
solar irradiance at the wavelength of interest.

The surface is assumed everywhere Lambertian, i.e.,

ps(�r, �Ω → �Ω′) ≡
∣∣∣�Ω′ · �n(�r)

∣∣∣ /2. (7)

Note the normalization by 2, instead of π in 3-D. It follows
directly from the requirement that∫

�Ω′·�n(�r)<0

ps(�r, �Ω → �Ω′)d�Ω′ = 1

where d�Ω′ = dθ′; note that �Ω′ · �n(�r) = cos(θ′ − θ�n(�r)), and in-
tegration limits (cos(θ′ − θ�n(�r)) < 0) are therefore θ�n(�r) + π/2
and θ�n(�r) + 3π/2. For future (MC implementation) use, this
means that the new direction of propagation is θ′ = (θ�n(�r) +
π) + θr(ξ) where

θr(ξ) = sin−1(1− 2ξ) (8)

is the diffuse reflection angle, ξ being drawn from a uniform
distribution on (0,1). Equivalently, θr(ξ) = ± sin−1 ξ where the
sign is chosen at random. This contrasts with the usual 3-D case
where θr(ξ) = cos−1

√
ξ and the azimuthal angle is chosen at

random in (−π,+π].
Surface albedo is given by a piecewise constant function of z

α(�r) ≡ α(z) =

{
0.1, 0 ≤ z ≤ Hsfc/2
0.5, Hsfc/2 < z ≤ Hsfc

(9)

as expected when vegetation cover changes with altitude. In
this case, we go suddenly from sparse to dense vegetation as
altitude increases assuming an NIR wavelength (where there
are many gaseous absorption features). This is suggestive
of an industrial facility embedded in a hilly landscape. A
valley surrounded by high mountains would have the opposite
trend with altitude. The scale implied by the values of L and
Hsfc suggests the later scenario but, in the end, only the non-
dimensional numbers matter: the terrain aspect ratio (L/Hsfc),
and the Aerosol Optical Depth (AOD) introduced next.

B. Aerosols

The optical properties of the atmosphere (region R) are
parameterized as

σ(�r) ≡σ(z) = σ0e
−cz (10)

σs(�r) ≡σs(z) = �0σ(z) (11)

where:
• �0 = 0.9 for the aerosol single scattering albedo (SSA), a

typical value, assumed constant with height;
• σ0 is the extinction coefficient at the low point in the

terrain (x = z = 0), and 1/c is the characteristic scale
height of the aerosol.

The “baseline” aerosol is defined by c = c0 =
0.5 [km−1](1/c0 = 2 [km]). In general, the AOD, measured
vertically over the low point in the terrain, is given by

τa(c) =
σ0

c
(1− e−cHsky) (12)

Fig. 2. Adopted phase function for aerosol scattering. Expressions for the
H–G model are found in (13) and (14). Parameters are: f1 = 0.9; g1 = +0.8;
g2 = −0.4. In dotted gray lines: the two components separately. A polar
version of this plot can be seen in Fig. 1.

and its baseline value is set to unity, a choice that leads to
σ0 ≈ 0.58 [km−1]. This scenario corresponds to a relatively
heavy aerosol load, in other words, quite hazy observation con-
ditions. We will, however, allow for other values further on by
varying c.

The scattering phase function is taken to be everywhere equal
to a 2-D counterpart of the double [31] Henyey–Greenstein
(H–G) model [30], namely

pv(�r, θ → θ′) ≡ f1pg1(θs) + (1− f1)pg2(θs) (13)

where θs = |θ′ − θ| in 2-D and [32], [33]

pg(θs) =

(
1

2π

)
1− g2

1 + g2 − 2g cos θs
. (14)

Parameter g is the asymmetry factor of the above H–G phase
function model defined, as in 3-D, as the angular mean of cos θs.
This leads to g = f1g1 + (1− f1)g2 for the double H–G model
in (13). We assume (f1, g1, g2) = (0.9,+0.8,−0.4), hence g =
0.68, a representative value for a background aerosol. Fig. 2
shows this phase function model along with its forward- and
backward-peaked components (is it also plotted in log-radial
axis as an inset in Fig. 1).

Since θs = θ′ − θ in 2-D, the scattering kernel in (1) is sim-
ply a convolution of the radiance field with the phase function
in direction space. For deterministic solutions of the 2-D RT
equation, it is therefore important to know the coefficients of the
Fourier-cosine series for (14), which are simply gn for n ≥ 0
(precisely like for the required Legendre series expansion of the
3-D H–G model); this result was used to determine the three
parameters so they approximately fit the three first Legendre
moments of a real fine-mode aerosol (hence, approximate its
shape in Fig. 2 for our 2-D world). For a MC solution of the
RT equation, as is used here, it is best if one knows explicitly
the scattering angle θs(ξ) at which the definite integral of (14),
starting from −π, equals ξ ∈ [0, 1]. This turns out to be

θs(ξ) = 2 tan−1

[(
1− g

1 + g

)
tan ((ξ − 1/2)π)

]
. (15)
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TABLE I
SUMMARY OF FIXED ATMOSPHERE–SURFACE PARAMETERS

For the double H–G phase function, linear combinations of
the Fourier coefficients are computed according to (13). In the
MC simulations to follow, we draw the scattering angle from
either pg1(θs) or pg2(θs) based on a simple Bernoulli trial that
decides which asymmetry factor to use in (15).

C. Atmospheric Variables

All of the above optical properties are held constant and
assumed known in the remote sensing simulation studies de-
scribed in later sections of this report. However, the aerosol
stratification parameter c0 is only a reference value, and we con-
sider the aerosol only partially known. The actual atmosphere
is given by the same σ0 in (10) and (11), but with

c = c0 + δc (16)

where δc ≥ −c0 is a perturbation on the baseline inverse scale
height c0. It will automatically impact τa(c) according to (12),
hence more (less) total aerosol when δc < (>)0.

Moreover, the atmosphere contains a uniform plume of
purely absorbing gas that we represent parametrically as a
circular region

A =
{
(x, z)T ∈ R; (x− xp)

2 + (z − zp)
2 < ρ2p

}
. (17)

Therein, the absorption coefficient becomes

σa(�r) = (1−�0)σ(z) + kp (18)

whereas only the first term applies outside of region A. We
will vary kp and, consequently, the absorption optical diameter
of the plume τp = 2ρpkp. Another interesting property of the
plume is its total mass, which is ∝ kpρ

2
p since kp is the product

of the absorbing particles’ volume density, actually surface
density in 2-D, and their (presumably known) cross section for
absorption.

D. Summary

Table I displays the key properties of the atmosphere–surface
system that remain fixed in the present study. This defines
the “reference world.” Table II describes the continuum of
“γ worlds.” These γ worlds constitute the realm of possibili-
ties in the Bayesian retrieval simulated later on in the paper.

TABLE II
SUMMARY OF VARIABLE ATMOSPHERIC PARAMETERS TARGETED IN

BAYESIAN RETRIEVAL

Formally, γ represents the 5-D state vector of remote sensing
unknowns, viz.,

γ = (xp, zp, ρp, kp; δc). (19)

Other parameters that could be added to the above list of vari-
ables amenable to the adopted MC path-recycling methodology
are:

• σ0 in (10), the overall multiplier of AOD;
• �0 in (11), the SSA;
• three double H–G phase function parameters in (13);
• two values assigned to the z-dependent surface albedo

in (9).
In practice, the parameters in γ must be constrained. We

therefore require γ ∈ Γ ⊂ R
5 where

Γ = [xmin, xmax]× [zmin, zmax]× [ρmin, ρmax]× [0,∞)

× [δcmin, δcmax]. (20)

IV. COMPUTATIONAL RT MODEL

We describe here the physics-based numerical simulation of
the single monochromatic imaging sensor used in the scene
reconstruction from remote sensing data.

A. Adopted MC Scheme

“Photon” trajectories or histories, as they are commonly but
unphysically [34] called, are generated in transport space as
follows in the plume-free case where �0 = σs/σ is constant.

1) A starting position and direction (�r0, �Ω0) are drawn from
the source probability distribution Qs in (6). In this case,
z0 = Hsky, x0 is drawn randomly from (−2.5,+2.5),
and θ0 is set to π.

2) The photon travels along the path �r(t) = �r0 + t�Ω0, t > 0,
interacting at point �r(t1) with a cumulative probability
distribution given by

P (t) = Pr{0 < t1 < t}

=1− exp

⎛
⎝−

t∫
0

σ(�r0 + t1�Ω0)dt1

⎞
⎠ (21)

using (10) with c = c0. In other words, the optical dis-
tance would then be defined in terms of t1: τ(t1) =∫ t1
0 σ(�r0 + s�Ω0)ds, which is exponentially distributed
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Fig. 3. (Left) Several photon trajectories that all ended at the detector. Seventy-five trajectories (out of ≈26 000 total sample) hit the small (0.1 [km]) detector
above the terrain on the right-hand side of the medium. These are the only ones of interest in the following plume characterization by remote sensing. (Right)
Examples of “images” in 2-D captured by the detector. Fluxes crossing the right-hand lateral boundary are measured and assigned to the 15 “pixels” in the image.
A “fish-eye” optics is assumed (180◦ field-of-view). Going left to right, they are ordered from nadir (θ = 180◦) to zenith (θ = 0), with angles re-centered on
the horizontal look (θ = 90◦). Hence, to the right (+ve angles), we are looking at sky and, to the left (−ve angles), we go from sky into the partially reflective
terrain. Directions of transitions from bright to dark and back to bright surface at z = 1 [km] are indicated by squares. Two situations are displayed. Dashed line:
No absorbing plume and nominal aerosol, γ = (·, ·, ·, 0; 0) in (19). Solid line: γ = (+0.35 [km], 2.5 [km], 0.5 [km], 0.5 [km−1]; 0.15 [km−1]), to illustrate
the path-recycling technique. Direct lines of sight to the plume edges are indicated by the downward pointers. This plume and aerosol is used as “truth” in the
Bayesian inverse problem solution experiments presented in Sections V and VI.

with unit mean. Such random numbers are generated by
− ln ξ where ξ is drawn from a uniform distribution on
(0,1). If the photon does not interact in the volume R, it
will always interact with the boundary ∂R.

3) At the interaction point �r1, the photon is either absorbed
or scattered.

• At a surface interaction, �r1 ∈ ∂R, the photon will
be absorbed with probability 1− α(�r1), and the ran-
dom walk is terminated. If not, it will choose a new
direction θ1 using the probability density function
(PDF) ps(�r1, θ0 → θ1) in (7), hence using (8).

• At a volume interaction, �r1 ∈ R, the photon will
be absorbed/terminated with probability 1−�0. If
not, it will scatter into a new direction θ1 using the
PDF pv(θ0 → θ1) in (13) and (14), that is, using a
Bernouilli trial followed by (15).

4) Steps 2) and 3) are repeated, with subscripts incremented
by unity, until the photon is absorbed. The only difference
is that intersection of the beam with the “cos3” terrain
must now be computed numerically. Exit from the do-
main is formally accounted for (as an absorption event, or
a detection) by making σ = ∞ and �0 = 0 outside of R.

We denote by n� the subscript (order of scattering/reflection) at
the time of escape or detection.

We note for future reference that this procedure defines a
Markov chain and, in Appendix A, Section A-1, a formal prob-
ability space is defined for computing means, variances, etc.
Also, in view of the “recycling” process described further on, all
the positions {�r0, �r1, �r2, . . . , �rn� , �rn�+1} of all the interactions
have to be stored on file, but only if they end on the detector’s
surface (at position �rn�+1).

The left-hand panel of Fig. 3 illustrates 75 trajectories based
on the above algorithm conditioned to end at the small detector
on the right-hand side of the medium. More precisely, this

detector is defined in transport space by x = L/2 and 2.45 <
z < 2.55 along with 0 < θ < π. When these 75 trajectories,
and many more, are tallied and partitioned into 15 equal-sized
angular bins from 0 to π, the resulting radiative fluxes across the
lateral boundary at the detector form an “image,” in fact a 1-D
angular scan in 2-D space, of the reference world. Re-centering
the angles around θ = π/2, the center of the detector’s field
of view, we denote this pixel data as Fi(i = −7, . . . ,+7)
where: i = 0 is looking horizontally, i > 0 is downward (into
the variable terrain), and i < 0 is upward (toward the sky).
Collectively, we will define the image as a formal 15-D vector

F(γ) = (F−7, . . . , F+7) (22)

where, for the moment, γ = (·, ·, ·, 0; 0) since the plume’s ge-
ometry (xp, zp, ρp) is irrelevant (arbitrary numbers) if kp = 0
(no absorbers are present). This monochromatic image F(γ)
is plotted in Fig. 3 (right panel, dashed line). In a typical
simulation, 5 to 8× 105 trajectories ending at the detector are
used, starting with as much as 350 times more (roughly 2 to
3× 108 histories). This loss factor is largely dependent on the
finite physical size of the detector.

As expected, radiance from the hazy sky, to the left, is lower
than that from the directly and diffusely illuminated reflective
surface (with additional path radiance), to the right. Moreover,
we recall from (9) that the higher altitudes are assigned a higher
(vegetation-type NIR) albedo. Therefore, as the (re-centered)
viewing angle in Fig. 3 (right panel) decreases from 0◦, the
far end of the high-altitude/high-albedo terrain is scanned, and
correspondingly high radiance values are observed. Then, the
lower terrain is scanned, resulting in lower radiance. The radi-
ance then rebounds when the near side of the higher altitude/
reflectivity terrain is reached. Finally, the radiance collapses
to near-zero values because the nearest terrain is not even
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illuminated; this artifact goes back to the choice of making
the lateral non-terrain boundary “open” (absorbing BC applied)
and to limit the illumination from z = Hsky to |x| < 2.5 (rather
than L/2 = π). This keeps the ray-tracing simpler and does not
affect the validity of the multipixel retrieval demo described
further on.

Note that, although its observations are indexed with the an-
gular coordinate θ in direction space, this is an imaging sensor,
and we are in the relatively new realm of “multipixel” retrieval
techniques. (See [35] for an early example of a crude two-
pixel/monochromatic/mono-angular technique targeting broken
clouds.) The angle-based definition of the pixels used here is
entirely traceable to the static sensor’s location at close range
from the scene. From that vantage, only an angular scan (or
a CCD-type focal plane array) can ensure imaging. A space-
based counterpart of this simple sensor can collect an image
in push-broom mode at a single angle using its orbital motion.
Even an imaging focal-plane device at such a large stand-off
distance captures light emerging from a small area with quasi-
parallel beams (i.e., almost identical θ).

At any rate, the scene reconstruction described further on
is inherently multipixel in kind, not multi-angle. Truly multi-
angle observations would call for multiple sensor positions
in the present MC simulation. In practice, it can be a single
platform moving through space at orbital speeds with multiple
push-broom or CCD sensors, e.g., aforementioned MISR or
POLDER missions, respectively.

B. Discussion

The above algorithm is best described as a “brute force” MC
method. It was coded in Python and could take up to two days
to execute for 2 to 3× 108 histories total. With the present
detector geometry, only ≈1/350 of these rays contributed to any
of the the 15 pixel-scale signals, hence were written to file for
future recycling.

Apart from translation from a scripting language to a com-
piled one and more massive parallelization, the forward MC
scheme could be accelerated at fixed accuracy in several ways.
For instance, in the course of the MC random walk described
above, each trajectory could carry, along with coordinates, a
weight w that accounts for absorption processes, i.e., starting at
w0 = 1, it would be reduced by a factor of �0 at each scattering
and by a factor of α(�r1) at each reflection; concern over wasting
time by working toward trajectories with negligible weight can
be alleviated by using the “Russian roulette” procedure [36]
when a judicious weight threshold is crossed. However, in view
of the fact that we will need to recycle all the trajectories that
reach the detector, as explained further on, we will need to
store not just (xi, zi) but also wi for i = 0, 1, . . . , n�. More
problematic is that there will be more detection events to revisit,
and all will carry less than unit weight. Hence, it is not clear that
the retrieval method described further on will benefit, only the
forward calculation.

The same argument can be made about the “local estimation”
technique [4], [36] where a contribution to the observed signal
is sent from every scattering and reflection event, appropriately
weighted by the phase function and the probability of direct

transmission to the detector, which can then be reduced in size
to a point. A better idea is to combine backward MC, where ev-
ery simulated path ends at the point detector, with the local es-
timation technique, this time collecting a contribution from the
source at every scattering and reflection along the way. How-
ever, because it is impractical to recycle too many low-weight
(i.e., improbable) trajectories, the weight threshold for death by
Russian roulette will have to be quite high, and the cost of Rus-
sian roulette in increased variance will have to be factored in.

In the practical applications that lie beyond the present
demonstration, the optimal strategy for the forward computa-
tion will depend on how confident we are in the fixed elements
of the scene. In this case, we would need to rerun the whole
simulation whenever we change the structure of the terrain’s
shape or height. A change in the position of the source (i.e.,
time of day) or the detector (e.g., new collection) also mandates
at present a new forward run. At that point, forward or backward
local estimation techniques may become more attractive since
they can be used quite efficiently to predict signals for multiple
detectors or from multiple sources. However, a change in the
surface reflectivity map (9) can be handled by path recycling,
to be described next. The same remark applies to a change in
the aerosol reference case or its phase function.

Operational circumstances can require a user-directed it-
eration on the structural properties of the scene (considered
fixed in the rest of this study), yet we still need to use a MC
framework to generate (possibly weighted) paths from source
to detector for recycling. In that case, we should seek the most
efficient MC methods, which are likely to be hybrid ones that
use deterministic solutions to achieve radical variance reduction
[37, and references therein].

C. Path Recycling

This is the MC acceleration technique that enables us
to develop a retrieval algorithm to determine what γ-world
the sensor is actually looking at. Thus, the right-hand panel
of Fig. 3 also illustrates simulated observations for one
instance of a γ-world (solid line), specifically, when γ =
(+0.35 [km], 2.5 [km], 0.5 [km], 0.5 [km−1]; 0.15 [km−1])
where the key is given in (19). In particular, we note that the
absorption optical diameter of the plume, 2ρpkp, is unity. The
arrow heads on the lower horizontal axis indicate the position of
the absorbing gaseous plume in the field of view. As expected,
the radiance decreases significantly in the pixels that directly
image the plume since it reduces the (surface) reflected and
(volume) scattered light that streams into them. The radiance
increases somewhat in the direction of the more distant terrain
(13◦ and 27◦ bins) as well as the nearby terrain (54◦ bin). This is
because the aerosol element δc in this γ is positive, thus reduc-
ing the AOD in (12) from unity (for c = c0 ≈ 0.58 [1/km]) to
≈0.83 (for c = c0 + δc = 0.65 [1/km]). The ensuing increased
transmittance of direct sunlight to the surface and of surface-
leaving radiance to the sensor is therefore overcompensating
the reduced path radiance (cf. the lower radiance in the “sky”
pixels). This is largely because direct sunlight has to be scat-
tered through angles 100◦ � θs � 120◦) to reach the detector at
these angles, which is unfavorable (cf. Fig. 2).
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This second image was computed by recycling the paths that
were used to compute the previously discussed reference image
(dashed line). Some 334 207 trajectories contributed to these
simulated observations (out of a total of 172× 106 casted rays),
resulting in an average relative MC error of 0.44%.

Appendix A describes in full mathematical detail why and
how MC path recycling works using changes of probability
measure. In MC lingo, it is an application of the principles of
importance sampling that underlie the “method of dependent
trajectories” [36]. The main innovation in path recycling is that,
in the traditional implementation of the method of dependent
trajectories, the number of alternative worlds is necessarily
finite and even quite small because the paths to the detector are
not kept on file but processed on the fly. In contrast, the path-
recycling method enables continuous variation of the changing
parameter, i.e., an infinite number of alternate worlds to con-
sider in the retrieval stage. It has been applied previously in
medical imaging applications [38]–[40], but here it is enhanced
with new capability (cf. Appendix A). In practice, each path
�ri = (xi, zi)

T, i = 0, 1, . . . , n� + 1 that ends at the detector is
recalled from memory or disk and assigned a weight of unity.
(Here, n� is necessarily ≥ 1 since only diffuse light can be
detected.) It is then reprocessed in two steps.

1) Non-Vanishing ρp and kp: First, the weight of the path
is changed if any of its n� segments intersects the circle of
radius ρp centered at (xp, zp)

T that defines the gaseous plume
with absorption coefficient kp. The corresponding multiplica-
tive factor is exp(−kp�γ,i) where �γ,i ≥ 0 is the length of the
intersection of the ith segment with the circle defined in γ.
There are highly efficient ways of computing the intersection
circles and lines readily adapted to the problem at hand. In
practice, the overall factor to use (interpreted in Appendix A,
Section A-2, as a change in probability measure) is exp(−kp�γ)

where �γ =
∑n�

i=0 �γ,i.
2) δc Differs From Zero: Second, we need to compute the

change in the pixel-level signals resulting from redistribution
of the background aerosol particle density when δc in (16),
the 5th and only non-plume element in γ, is �=0. It is not
obvious that this is possible without casting a whole new set
of rays. In Section A-3 of Appendix A, it is shown that this
is indeed possible, and the corresponding change in weight
of each detected photon’s path is computed explicitly. The
computation, however, is more involved than for the effect
of the purely absorbing plume that was reduced in the above
to straightforward computational geometry. To compute the
new signals for a γ world with δc �= 0 knowing the ones
when δc = 0 (reference world), we need to look at how δc
changes the probability of scattering in one position rather than
another along each segment of the broken ray. That part of the
photon transport is described mathematically by the cumulative
distribution in (21) with the exponential stratification (10) in
mind. If we do not want to change the value of c (namely, c0)
in order to leave all the scattering points where they are, that is
alright as long as the path is properly re-weighted.

The basic question here is whether the new value of c in (16)
makes the given scattering point, possibly a surface interaction,
more or less probable than the what it is in the reference case.
The probability level of the realized scattering point is given by

dP/dt in (21) using c = c0 while the alternative dPγ/dt uses
c = c0 + δc. Assuming that it ends with a volume scattering,
the weight correction factor we need is the ratio

∣∣∣∣dPγ

dP

∣∣∣∣
i

=

∣∣∣dPγ

dt

∣∣∣
i∣∣∣dPdt
∣∣∣
i

(23)

at the ith step where

∣∣∣∣dPγ

dt

∣∣∣∣
i

= σ(�ri + t�Ωi) exp

⎛
⎝−

t∫
0

σ(�ri + s�Ωi)ds

⎞
⎠ (24)

with δc �= 0 in the numerator, and the same with δc = 0 in the
denominator, in expression (10) for σ(�r). For a step ending
in a boundary (terrain or detector) interaction, we have only
the above exponential term to worry about when computing
the weight correction ratio. For the whole path, we need to
evaluate |dPγ/dP| =

∏n�

0 |dPγ/dP|i. See Appendix A-3 for the
computational procedure using only data from the existing path.

D. Verification and Performance of the Forward Model

The accuracy of our forward RT model for the parameterized
scene was rigorously verified. In particular, we conducted a
variety of tests where

1) A standard MC simulation of transport in an atmosphere
parameterized by some value of γ was run until the
relative mean square error was less than 0.3%. The mean
fluxes are stored as M(γ) = {Mi(γ), i = −7, . . . ,+7}.

2) Another MC simulation was run in an atmosphere pa-
rameterized by γ0 = (0, 1, 0, 0; 0) (no plume and baseline
aerosol atmosphere). The paths to the detector are stored.

3) The paths from (ii) are used in the path-recycling forward
model to compute F(γ).

The forward model is deemed verified if:

• |Fi(γ)−Mi(γ)|/Mi(γ) ≤ 0.01, ∀i = −7, . . . ,+7;
• as γ′ becomes sufficiently different from γ, the relative er-

ror |Fi(γ
′)−Mi(γ)|/Mi(γ), ∀i = −7, . . . ,+7, becomes

much worse than 1%.

The forward model passed this test for a wide variety of γ
values.

The performance increase is dramatic. For example, it took
11 727 equivalent one-core minutes (8+ days) for the Python
code to generate approximately 231 million paths on a four-core
2.6 GHz workstation. Of these paths, ≈1/348 hit the (0.1 [km]
wide) detector. These paths can, however, be recycled in only
30.9 equivalent one-core seconds (22 770 times faster), while
one might have expected a speed-up of only about 348 times
if one had a Maxwell’s daemon that could discriminate at the
source rays that would hit the sensor from those that would not.

The dramatic difference is due mostly to the fact that the
original paths were cast using complicated code that explicitly
stepped the photons through their path, while the much simpler
recycling was done using optimized code. In any case, recycling
paths only involves computing a ratio of weights and in many
cases is generally much quicker than sending the original paths.
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It is of course worthwhile to revisit the question of computa-
tional efficiency if a backward MC scheme was used where all
the trajectories generated start by definition at the detector.

V. BAYESIAN MULTIPIXEL RETRIEVAL TECHNIQUE

A. General Considerations

The Bayesian viewpoint takes the remote sensing unknowns
as random variables. Rather than simply find parameter val-
ues that best fit the observations, a multivariate probability
distribution is provided for the parameters. From there, one
can evaluate means, most probable values, medians, variances
(retrieval uncertainties), and so on.

In general, our unknown is a random vector x ∈ R
n with

prior probability density pprior(x). This is the distribution
we assume (from prior knowledge) on x before any data are
collected. In this paper, we have n = 5 and denote x as γ, with
specific definitions in (19) and bounds in (20) as well as in
Table II.

We assume our data d ∈ R
m are given by observations as

well as by an infinite-precision forward model F∞(x) viewed
here as a vector-valued multivariate function of x. In the present
study, we have m = 15, that is, one observation per pixel in the
1-D image of 2-D space taken from the fixed detector position.

Mathematically, F∞ : Rn → R
m, with m ≥ n if we want to

have any hope of recovering all the parameters in γ. We also
have an additive noise vector term E assumed to be independent
of x and Gaussian, with a covariance matrix ΣE. Thus, our
model for the data is

d = F∞(x) +E, E ∼ N (0,ΣE), E ⊥⊥ x. (25)

We adopt here notations from mathematical statistics: ∼ means
“distributed as” and ⊥⊥ means “independent of”. The methods
presented here do not depend on the choice of prior PDF. The
Gaussian assumption about the additive noise model simplifies
the algebra, but is not strictly necessary either.

We note that potentially significant improvement could be
made by using a realistic model for E. That uncertainty is
much harder to quantify and is actually not independent and
identically distributed (i.i.d.). For simplicity, we nonetheless
choose the noise to be i.i.d. in all 15 detectors. This is certainly
not so, since pixels pointed toward the ground encounter a
different level of noise than those pointed toward the sky. A
result of this i.i.d. assumption is that about half of the pixels,
those pointed in directions not receiving flux that last hit the
plume, can receive a signal smaller than the noise dictated by E.
Moreover, E should ideally capture not only instrumental noise
but also forward modeling error, e.g., deviation of the real world
from assumptions such as exponentially distributed aerosols.
That uncertainty is much harder to quantify and is actually not
random but systematic in nature. In this demo, we are relatively
immune to this effect since the forward models used, on the one
hand, for generating the simulated data and, on the other hand,
for the iterations in the inverse problem solution are closely
related.

In its most general form, Bayes’ rule [41, among others]
states that p(x|y) = p(y|x)p(x)/p(y) where p(a|b) designates

the probability density of the random variable a, conditioned on
a specific occurrence of another random variable b. It expresses
how observations, denoted y, affect our knowledge of proper-
ties of interest, x, starting from no observations at all. Prior to
acquiring observations y, all we have is the probability density
p(x). After the observations are made, we have narrowed the
possibilities to p(x|y), the “posterior” probability density, and
the collapse is driven by the probability density of observing
values y for given (although still unknown) properties, namely,
p(y|x). We note that the marginal probability density of the
observations p(y) (for any state x) is often treated as a nor-
malization factor that can be ignored in practice: it suffices to
state that p(x|y) ∝ p(y|x)p(x) where p(y|x) is known as the
“likelihood” function.

In our present notations and assumptions, the posterior is

π∞(x|d)∝pprior(x)
1

|ΣE|
1
2

exp

(
−1

2
‖d−F∞(x)‖2Σ−1

E

)
(26)

where, for vectors v ∈ R
m and square matrices M ∈ R

m ×
R

m, we define ‖v‖2M as vTMv. Symbols were defined in
the above text. The “∞” subscript is used here to distinguish
the ideal (infinite-precision) forward model from the noisy
approximations we can actually compute.

Note that the argument of the exponential in (26) is the fa-
miliar cost function that is minimized in standard retrieval tech-
niques using, e.g., the popular Levenberg–Marquard algorithm.
The value of x that is targeted by cost function minimization is
known for obvious reasons as the “maximum likelihood” esti-
mate. Moreover, if pprior(x) is written as e− ln(1/pprior(x)), we
can combine the exponentials and interpret the negative sum of
their arguments as a modified cost function where the additional
term is − ln pprior(x). This amounts to a statistical constraint
that will shift the value of the optimal parameter values in the
direction that maximizes pprior(x). For instance, very uncertain
data (large values in ΣE) will downplay the importance of
the original cost function, and the minimization procedure will
yield the mode of the prior distribution, irrespective of d. Often,
the new term is modulated by a weighting factor that can be
made smaller as the minimization progresses.

In the present application (MC-based forward 2-D RT mod-
eling), we do not have access to F∞, but instead to a sequence
of approximate models F1,F2, . . . with increasing but finite
precision. In our framework, the approximate models are an
unbiased sum of i.i.d. random variables, and so we are justified
using a Gaussian error model

Fj(x) ∼ N (F∞(x),Σj(x)) (27)

where Σj(x) = Var{Fj(x)} that, we assume, can be estimated
accurately. This is indeed the case when the forward model is
solved by MC techniques. See App. B of Part I for a formal
description of our hierarchical modeling framework.

Equation (27) leads to an enhanced noise model at precision
level j

d = Fj(x) +Ej(x) +E, E ∼ N (0,ΣE), E ⊥⊥ x,

Ej(x) ∼ N (0,Σj(x)) , Ej(x) ⊥⊥ E (28)
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and a likelihood at precision level j,

πj(d|x) =
1√

(2π)m |ΣE +Σj(x)|

× exp

(
−1

2
‖d− Fj(x)‖2(ΣE+Σj(x))

−1

)
. (29)

Instead of one posterior, we now have a suite of finite-
precision posteriors {πj(x|d)}∞j=1:

πj(x|d) ∝ pprior(x)πj(d|x) (30)

and we recall that an MC prediction for d at lesser precision is
cheaper to compute by a known factor (cf. Appendix B).

B. Application to 2-D Scene Parameter Estimation

Rather than infer a specific value for the state vector, even
with statistically reasonable uncertainty estimates, our goal here
is to tally a complete multivariate histogram for the posterior
distribution of possible parameter values as efficiently and
accurately as possible.

Returning to our original notations, three different algorithms
were tested for the estimation of πj(γ|d) by sampling Γ-space
in various ways for use in (30). At the core of all three
algorithms is the concept of a Markov chain MC (MCMC)
process [43] where, like in the RT application, a MC (a.k.a.
“random quadrature” rule) is used to compute integrals. MCMC
is essentially a random walk in the 5-D Γ-space following
certain rules that determine algorithmically the Markov chain’s
transition probabilities. The integrals of interest are the poste-
rior probability levels, based on (30), in a large number of bins
defined on a gridded version of Γ-space. Starting at some ran-
dom point in Γ, the transition rules involve using a “proposal” to
move to another value of γ; this proposal is accepted or rejected
based on a criterion that expresses how helpful it is to update
the estimate of the gridded posterior πj(γ|d). We note that the
expression of the criterion does not require the posterior to be
normalized; that is done after convergence is achieved.

Here, MCMC was used for Bayesian posterior estimation in
a setting where the forward model for the data is an RT model
also implemented with a MC scheme. As pointed out earlier,
that RT modeling framework also uses Markov chain concepts
and the integrals of interest are the radiances in each pixel of
the images formed by the detector. Generally speaking, other
kinds of (possibly polarized) 1-D, 2-D, or 3-D RT models are of
course admissible in the part of the computation where the cost
function (i.e., ‖d− Fj(γ)‖2(ΣE+Σj(γ))−1) is estimated for any
number of remote sensing problems. MC is, however, a natural
choice in multidimensional RT, the whole multipixel inversion
scheme we propose is therefore called the “MC3 method.”

The three MC3 algorithms we tested are described in detail
and intercompared in [29], a companion paper to this one.
The baseline algorithm we tested (#1) was the well-known
Metropolis–Hastings [44]–[46] technique applied to a single
level of forward model precision. The two other algorithms
build on that classic methodology. Algorithm #2, previously
used in [47], [48], couples two model precision levels, while
#3, the new development in computational MCMC technology,
couples multiple levels. Fig. 4 illustrates the trace of a single

Fig. 4. Γ-space sampling with three MCMC algorithms. Only the projection
of the random walk along the kp axis is displayed. From top to bottom: #1)
traditional Metropolis–Hastings (M–H) [44]–[46]; #2) two-level M–H [47],
[48]; #3) multilevel M–H with prescribed confidence [29]. In all cases, the code
was run for the equivalent of 5 h on a single 2.6 GHz Intel core.

coordinate of γ (namely, kp) for a single MC3 trajectory using
the three algorithms running each for 5 h on the same platform.
Progress is striking since the efficiency of an MCMC sampling
technique can be measured by how soon all the bins (along the
vertical axis in Fig. 4) are sufficiently well populated. The new
(multilevel) algorithm proves to be the most efficient; it was
therefore retained for the remainder of the study.

In a multilevel MCMC approach, the speedup of the re-
quired sampling of Γ-space results from the option to accept
or reject a proposal based on a less precise, but cheaper to
compute, prediction of the observations used in (29). It is
critical to know upfront the “cost” in forward model precision
for “buying” time. Fortunately, in the case of a MC trans-
port model, as used in MC3, it is easy to control precision
(see Appendix B for the case of path recycling).
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Fig. 5. Marginal posterior distributions for plume position parameters at
SNR = 5. (Top) xp [km]. (Bottom) zp [km].

VI. NUMERICAL RESULTS

We avoid an “inverse crime” by generating data using a
slightly different forward model than is used in the inversion.
Specifically, the integrals appearing in the transport solution
(e.g., (21)) are computed using an explicit Euler scheme with a
random step size distributed uniformly between 0.05 [km] and
0.15 [km]. Different seeds were used to generate the paths for
recycling and to obtain the data. This introduces a discretization
error that mimics the unavoidable model error due to the
fact that real-world atmospheres and plumes never follow our
assumptions. For instance, even if we view the “cos3” terrain
as a stand-in for a precise digital terrain model, our exponential
parameterization of the background aerosol is just a convenient
approximation that we exploited explicitly in the path-recycling
process. Tests where the inverse crime was committed deliber-
ately lead as expected to closer agreement between the assumed
(“true”) and retrieved γ, at a given signal-to-noise ratio (SNR).
The assumed SNR is used to specify E in (25).

We take SNR = 5 (ΣE = diag[d]/5). This seems low but
is not unrealistic if we recall that the spectral bandpass of a
dedicated gas-plume sensor should be quite narrow in order to

Fig. 6. Marginal posterior distributions for inherent plume properties at
SNR = 5. (Top) ρp [km]. (Bottom) kp [1/km].

boost the absorptivity contrast of the molecule of interest. The
four panels in Figs. 5 and 6 show the marginal posteriors for
the plume-related elements of γ, namely, (xp, zp, ρp, kp). We
see that all but xp are reasonably well-characterized probabilis-
tically. In particular, the estimated means for parameters zp, ρp,
and particularly kp are reasonably close to the assumed/true
values. We can attribute the failure of the xp inference to do
as well to the fact that, unlike zp, varying its values does not
move the response to new pixels in the image; to see this,
review scene/detector and prior bound geometries in Fig. 1.
Consequently, the xp inference would be the first to benefit
from a second look at the scene from a different vantage point,
say, directly overhead. This second image could of course be
captured by the same sensor mounted on a mobile platform.
Moreover, there is no fundamental difficulty in generalizing the
Bayesian multipixel methodology used here to a multipixel/
multiview one that would get us closer to a bone fide atmo-
spheric tomography of the scene.

Fig. 7 shows the stops of the MCMC random walk in 2-D
hyperplanes of Γ-space; these are the intermediate data prod-
ucts that enable the estimation of the posterior distributions.
The two panels of Fig. 7 also show more clearly why xp



2914 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 5, MAY 2013

Fig. 7. MCMC samples for joint marginal posterior distributions for plume-specific parameters at SNR = 5. (Left) (xp, zp) drawn to scale given the horizontal
range in the upper panel of Fig. 5 (cf. plume center bounding box in the schematic in Fig. 1). (Right) (kp, ρp) drawn to scale given the horizontal ranges in Fig. 6.
More discussion in main text.

Fig. 8. Marginal posterior distribution for “plume mass” composite kpρ2p at
SNR = 5.

localization is poor compared to zp (left-hand panel) and why
kp characterization is better than for ρp (right-hand panel). This
last (kp, ρp) scatter plot shows a relatively tight anticorrelation
between the two parameters; one can almost see a negative
power law relationship between them. This is traceable to the
fact that the impact of the plume on the pixel-scale signal is, to
a first approximation, dependent on the product of kp with the
chord length of the intersection of pixel-specific lines starting
at the detector with the circular plume. The lengths of these
segments are clearly ∝ ρp. Fortunately, kp is better quantified
(narrower posterior) than ρp since it is the key parameter for
identifying the gas if a continuous spectrum was collected.

From the remote sensing perspective, correlation between
parameters of interest in the measured signals is unfortunate
since an observed change can be attributed to either one. In this
case, we wonder: Is the plume bigger or more absorbing? That
said, the end-user of the remote sensing technology may not
care that much: the objective may well be to assay the overall
amount of absorbing gas, which goes as kpρ

2
p. That product

is also a direct measure of the strength of the plume’s signal,
all pixels considered. This inspires us to look at how well that
parameter combination is determined in the Bayesian retrieval.
The result is plotted in Fig. 8 and, in this case, the posterior

Fig. 9. Marginal posterior distribution for δc at SNR = 5.

is remarkably different from the prior. In fact, the prior mean is
closer to the truth than is the posterior mean. However, the most
probable value is improved: the prior puts it at zero while the
posterior puts it somewhat closer to the truth than is its mean.

Finally, the outcome for the background aerosol δc is shown
in Fig. 9. Interestingly, this is the most narrowly retrieved pa-
rameter of all. This is not too surprising since plume parameters
benefit almost exclusively from the 3 or so pixels that view it
directly while all of the pixels are populated by light scattered
by the aerosol.

The authors experimented with other SNR values, particu-
larly smaller ones [29]. As expected, the inferred PDF for the
scene parameters are broader, closer to the prior distributions.

VII. SUMMARY AND OUTLOOK

We implemented and adapted an innovative computa-
tional approach to multidimensional RT developed recently
in biomedical imaging, namely, path-recycling MC. We used
it to define a hierarchical forward modeling framework for
simulating remote sensing signals generated by a spatially
variable scene at a variable level of precision. The terrain model
has variable height and a height-dependent albedo mimicking
a deep valley with sparse vegetation at low altitudes and dense
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vegetation at high altitudes, as viewed in the NIR spectrum. The
atmosphere is composed of a partially known aerosol, with an
exponential extinction profile with altitude, and there is a plume
of absorbing gas with a known cross section per molecule
but unknown location, size, and density. This is a plausible
scenario when one is searching for observable evidence of
nuclear proliferation activity.

The tell-tale plume is assumed uniform with a circular sec-
tion in (x, z) coordinates and, for simplicity, the RT unfolds
completely in these two spatial dimensions. The background
aerosol’s SSA and phase function are assumed known, as is its
concentration at the lowest point in the scene but its column-
integrated amount (measured by its optical depth) is varied
by changing the characteristic scale height of the exponential
profile. All told, there are five unknown quantities to retrieve
from the remote sensing data: four plume-related parameters
and one aerosol parameter. We showed that this 2-D atmo-
spheric structure, because it is represented parametrically, can
be reconstructed reasonably well, even at low spatial resolution
and with a modest (single-digit) SNR. The demonstration used
a single radiometrically calibrated image from a single sensor
at close range.

To underscore the novel, inherently multipixel nature of the
methodology, only a single spectral channel is considered,
presumably narrowed down optimal wavelength for detecting
the absorbing gas of interest (hence the interest in small SNRs).
Where the five-parameter retrieval does not perform too well
is for localization of the plume along the direction viewed by
the sensor. However, this aspect can certainly be improved by
adding a second view from another vantage point. The resulting
multi-angle/multipixel approach would be in essence a coarse
atmospheric tomography using a parameterized representation
of the spatial structure instead of imposing the usual regular-
ization constraints for ill-posed problems. This keeps the actual
number of structural unknowns small and manageable.

Multipixel retrieval algorithms introduced here require a
forward RT model that predicts whole images and, in particular,
how radiances in each pixel relate to each other via net transfer
of radiant energy across pixel boundaries. That, in turn, requires
a 3-D RT model. (Although, for this particular demo, a 2-D
RT model was used.) This is not to be confused with the
terminology recently introduced by Dubovik et al. [49] where
“multipixel” is used to describe a statistical constraint in the
cost function used for an aerosol property retrieval predicated
entirely on a polarized 1-D RT model. Similar constraints
have been used previously, for instance, in the intensity-only
operational aerosol retrieval developed for the MISR [50].

Finally, a Bayesian formulation of the remote sensing in-
verse problem was used. Consequently, the outcome is not a
single value for each of the five parameters, even including
uncertainty estimates, as would result from a standard cost
function minimization approach. The derived product is in fact
a whole multivariate probability distribution for the parame-
ters that is consistent with the data. The Bayesian inference
machine is simple to implement using “MCMC” algorithms
but takes special effort and considerable innovation to ensure
reasonably quick convergence to the desired posterior (that is,
data-informed) distribution of possible parameter values.

Although they are favored by many in computational 3-D
RT, MC RT techniques are notoriously slow to converge in
any number of spatial dimensions. Normally, this would make
MC an impractical way of solving inverse problems in remote
sensing, or almost any other application. However, path recy-
cling reduces the execution time for the limited forward 2-D RT
used here to just a few seconds. Parameterization is required,
but it only needs to be for the remote sensing target, not every
aspect of the scene’s make-up. There is no obvious reason why
this procedure could not be implemented in sophisticated 3-D
scene simulation frameworks that use ray tracing, such as
the Intercomparison of 3-D Radiation Codes community
MC model [51] or DIGital Remote Sensing Image Gener-
ator [52]. That additional capability would enable them to
be used in inverse problems of interest to their respective
sponsors.

APPENDIX A
COMPUTATION OF THE CHANGE OF MEASURE

The adopted path-recycling MC scheme follows three steps:
1) paths are generated in a reference atmosphere, and those
that hit the detector are saved; 2) the (increase/decrease of)
probability of these paths reaching the detector in the modified
atmosphere is calculated, resulting in a set of weights attached
to each path; 3) the weights are added resulting in an unbiased
estimate of the detected flux in the modified atmosphere. We
discuss here the underlying theory and practical implementa-
tion of the path-recycling forward MC model.

1) Path Measures: The algorithm described in Section IV-A
induces a measure on the space of finite-length paths, namely

Ω := {ω = (�r0, . . . , �rn�+1) : �rj ∈ R ∪ ∂R}

where we recall that n� is the last order of scattering, including
surface reflections, and we take �rn�+1 ∈ ∂R as the final point.
Note that, under reasonable conditions, the (discrete) stopping
time n� + 1 of the above Markov chain is < ∞. We therefore
have a probability measure Pγ . In the special case where γ =
γ0 := (0, 1, 0, 0; 0), corresponding to no plume and nominal
background aerosol, we have our reference measure P.

This allows us to define a differential measure dP and expec-
tation EP{·} by

P [A] := EP{1A} =

∫
Ω

1A(ω)dP (ω) =

∫
A

dP (ω) (A1)

where for A ⊂ Ω, the indicator function

1A(ω) :=

{
1, ω ∈ A
0, ω �∈ A

and similarly for dPγ .
As a highly relevant example of a subset of paths, consider

those that hit (and are necessarily absorbed by) the detector; see
left panel of Fig. 3 for a few samples. Denote these by a disjoint
union

D := D1 ∪ . . . ∪Dm
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meaning that if ω ∈ D then the path ω ended up in the detector,
and if ω ∈ Dν then ω hit the detector with incoming angle θ in
the interval [(ν − 1)π/m, νπ/m). Let

D := D1 × . . .×Dm, 1D := (1D1
, . . . ,1Dm

)

and thus our measurement is

Pγ [D] = Eγ{1D} := (Pγ [D1], . . . , Pγ [Dm]) .

One can similarly define EP{1D} = P[D] in the absence
of an absorbing plume. In the main text, we set m = 15 and
denoted the flux through the νth angular bin (or “pixel”) as Fi

where i = 8− ν (so that i = 0 is assigned to a horizontal look
to the left in Fig. 1).

2) Restoration of Plume Absorption kp: Here, we recover
only the effect of kp and, by extension, those of plume geometry
contained in the parameter trio (xp, zp, ρp). We assume all
other quantities are known and, in particular, that δc = 0.

Based on (21), the cumulative probability of absorption at the
detector in the reference measure P is given by

Eσ(�r0, . . . , �rn�+1) := exp

⎡
⎢⎣−

T (ω)∫
0

σ
(
�R(t, ω)

)
dt

⎤
⎥⎦ (A2)

a random variable where �R(t, ω) = (x(t, ω), z(t, ω))T is the
position of chain ω at time t ∈ [0, T (ω)] (in units where the ve-
locity of light is unity), with T (ω) being the instant of detection.
For Pγ , it is therefore given by Eσ(�r0, . . . , �rn�+1)e

−α	γ(ω),
where the random variable �γ(ω) is the total length of inter-
section of the path ω with the plume parameterized by (the first
four elements of) γ.

The intersection of an infinite line through a disk can be
computed very efficiently via known techniques. From there,
it is a simple extension to compute the intersection of a line
segment (�rj , �rj+1) with a disk, and hence �γ,j(ω) is obtained.

Specifically, one first computes

Δj = ρ2p −
(
(�rp − �rj)× �Ωj

)2
where we recall that �Ωj = (�rj+1 − �rj)/‖�rj+1 − �rj‖. If Δj ≤
0, the intersection is empty. Otherwise, define sj± = (�rp −
�rj) · �Ωj ±

√
Δj and compute sj+. If sj+ ≤ 0, the intersection

is empty (the disk is “upwind” from �rj). Otherwise, compute
ρ2j = (�rp − �rj)

2 and the same for j + 1. There are than just
three possibilities to consider:

• if ρ2j and ρ2j+1 are both > ρ2p, then �γ,j(ω) = 2
√

Δj ;
• or else, if ρ2j < ρ2p and ρ2j+1 > ρ2p, then �γ,j(ω) = sj+;
• or else, if ρ2j > ρ2p and ρ2j+1 < ρ2p, then compute sj− =

sj+ − 2
√

Δj and set �γ,j(ω) = ‖�rj+1 − �rj‖ − sj−.

In summary, we have∣∣∣∣dPγ

dP

∣∣∣∣ (ω) = e−kp	γ(ω), where �γ(ω) =

n�∑
j=0

�γ,j(ω). (A3)

3) Restoration of γ, Including Background Aerosol Pertur-
bation δc: Here, we recover the background given by (10) and

(11) with (16). Notice that the background absorption/scattering
depends only on the height z.

We begin by defining z1(ω), . . . , zn�(ω), the random
scattering/reflection heights. Our goal is to compute

Eγ{1D} =

∫
Ω

1D(ω)dPγ(ω) = (Pγ [D1], . . . , Pγ [Dm]) .

We start with the case with no absorbing plume where γ is
reduced to (0, 1, 0, 0; δc). We will have to differentiate the
scattering heights that occur in the volume from those that
happen in the volume (due to aerosols) or at the lower boundary
(due to surface reflection). Let the indices of the former be
denoted by j1, . . . , jns

where ns is total volume interactions
(i.e., bona fide scatterings by aerosol particles).

Here, again, we need to compute the Radon–Nikodym
derivative [53] |dPγ/dP|(ω). Note that Pγ differs from P in
two ways. First, the integrated extinction coefficient (total cross
section per unit of volume) is Eσγ rather than Eσ . Second,
the scattering coefficient and phase function in the non-baseline
volume are multiplied by a factor exp(−δcz). Therefore, using
(10) and (11) and (A2), but leaving the dependence on ω
implicit, we have

∣∣∣∣dPγ

dP

∣∣∣∣ = Eσγ (�r0, . . . , �rn�+1)

Eσ(�r0, . . . , �rn�+1)
×

σγ
s (�rj1) . . . σ

γ
s

(
�rjns

)
σs (�rj1) . . . σs

(
�rjns

)
=

Eσγ (�r0, . . . , �rn�+1)

Eσ(�r0, . . . , �rn�+1)
e−δc(zj1+...+zjns )

=Eσγ−σ(�r0, . . . , �rn�+1)e
−δc(zj1+...+zjns )

= exp

⎛
⎝−

T∫
0

[
σγ
(
�R(s)
)
− σ
(
�R(s)
)]

ds

⎞
⎠

× e−δc(zj1+...+zjns )

= exp

⎛
⎝−

T∫
0

σ
(
�R(s)
) [

e−δcz(s) − 1
]

ds

⎞
⎠

× e−δc(zj1+...+zjns ). (A4)

The second term, exp{−δc(zj1 + . . .+ zjns
)}, depends only

on the z-coordinate of an identified subset of the scattering
points (�r1, . . . , �rn�). Therefore, like for the plume-related term
in (A3), it can be computed without casting new rays: we only
need to store the scattering points. We now show that the first
term enjoys that feature as well.

Define the scattering/reflection times T1, . . . , Tn� , such that
�R(Tj) := �rj , along with T0 = 0 and Tn� = T . Note that

Tj = |�r1 − �r0|+ . . .+ |�rj − �rj−1|.

When Tj < s < Tj+1 the MC particle is traveling in a straight
line given by

x(s) = xj ± (s− Tj)
√

1− μ2
j , z(s) = zj + (s− Tj)μj

where μj is the vertical direction cosine of θj , the angle
between the direction of travel and the upwards unit vector
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(0,1); the positive sign is taken if the photon is traveling to the
right. We have

exp

⎛
⎝−

T∫
0

σ
(
�R(s)
) [

e−δcz(s) − 1
]

ds

⎞
⎠

= exp

⎛
⎝−σ0

T∫
0

e−c0z(s)
[
e−δcz(s) − 1

]
ds

⎞
⎠

= exp

⎛
⎜⎝−σ0

n�∑
i=0

Tj+1∫
Tj

[
e−(c0+δc)z(s) − e−c0z(s)

]
ds

⎞
⎟⎠ . (A5)

To evaluate this, note that (with h = c0 or h = c0 + c, and
assuming h > 0)

Tj+1∫
Tj

e−hz(s)ds = e−h(zj−Tjμj)

Tj+1∫
Tj

e−hsμj ds

=
e−hzj

hμj

[
1− e−h(Tj+1−Tj)μj

]
=

e−hzj

hμj

[
1− e−h|�Rj+1−�Rj |μj

]
. (A6)

Each term in (A5) is evaluated using (A6). Since this requires
only knowledge of the points �Rj , there is no need to recast the
rays. Finally, (A4) and (A5), once evaluated using (A6), are
combined to yield |dPγ/dP|(ω).

To restore the full effect of γ on |dPγ/dP|(ω), the term
e−kp	γ(ω) computed in Appedix A-2 (requiring knowledge only
of the scattering and reflection points) is factored in to up-
date |dPγ/dP|(ω). In the path-recycling MC code, this Radon-
Nikodym derivative is used as the new weight assigned to the
random photon path (the RT-related Markov chain) while re-
tallying the detector responses.

APPENDIX B
MONTE CARLO MODELS WITH VARYING PRECISION

Adopting the notations and definitions introduced in
Appendix A-1, we are in a position to describe our forward MC
RT model and compute from first principles probabilistic esti-
mates of means and variances, hence errors on the mean, and
(pixel-to-pixel) covariances. We summarize in this appendix
the main results of Bal et al. [29] that are key to the Bayesian
approach to the inverse problem.

The model uses importance sampling to compute Pγ [D]
from one fixed set of reference paths. This technique is an
advancement over “perturbation MC” schemes developed in the
context of medical imaging; see, e.g., [38]–[40].

Choosing N ∈ N, we generate N paths {ω1, . . . , ωN}. Now,
for any random variable X ,

1

N

N∑
j=1

1D(ωj)X(ωj)
a.s.−→ EP{1DX}, as N → ∞

where “a.s.” stands for “almost surely.” For example,
we could generate paths from measure Pγ , and then
N−1

∑N
j=1 1D(ωj)

a.s.−→ Eγ{1D}.

It is important to realize that since we only intend to estimate
expectations involving detector hits (e.g., Eγ{1DX}), we only
need to store paths that hit the detector. The expected number
of detector hits is exactly NP[D] � N .

For every new γ, we could generate a new set of paths and
repeat the above procedure. This would be costly since path
generation involves complicated steps. Instead, consider fixing
one set of reference paths {ωj , j = 1, . . . , N} (in practice stor-
ing only those that hit the detector) generated by the reference
measure P and then set

fN (γ) :=
1

N

N∑
k=1

1D(ωk)

∣∣∣∣dPγ

dP

∣∣∣∣ (ωk)

≈
∫
Ω

1D

∣∣∣∣dPγ

dP

∣∣∣∣ dP =

∫
Ω

1D dPγ = Eγ{1D}. (B1)

Computation of fN requires computing the Radon–Nikodym
derivative for the ≈ NP[D] paths that hit the detector, as
described in Appendix A. This is significantly faster than
generating N new paths.

Although already fast, fN can be significantly improved by
using (for relatively small N ) information from a simulation
that used a very large N . This is where we depart from the
aforementioned “perturbation MC” schemes.

We first generate Nmax paths using the reference measure P.
Denote by Hν

max the collection of paths ωk ∈ Dν , i.e.,

Hν
max := {ω1, . . . , ωNmax

} ∩Dν .

For ν = 1, . . . ,m, the number of observations (in our case,
pixels), let

Hν
1 ⊂ Hν

2 ⊂ . . . ⊂ Hν
max

be nested subsets of Hν
max of (fixed, predetermined) size Nj =

|Hν
j |. Note that Hν

j and Hν
max consist of i.i.d. draws from

P[·|Dν ]. Since |Hν
max| = N−1

max

∑Nmax

k=1 1Dν
(ωk), we have

CovP (|Hν
max| , |Hμ

max|)=
1

Nmax

{
P [Dν ]−P [Dν ]

2, ν=μ
−P [Dν ]P [Dμ], ν �=μ

where the above CovP(X,Y ) is defined as

CovP(X,Y ) := EP

{
(X − EP{X}) (Y − EP{Y })T

}
with subscript “P” making it clear that expectations are with
respect to the probability measure P.

Proof:

|Hν
max| =

1

Nmax

Nmax∑
k=1

1Dν
(ωj), ωj ∼ P.

In other words, it is the sum of Nmax i.i.d. random variables
(1Dν

/Nmax). The expectation of each random variable is
P[Dν ]/Nmax. Therefore

CovP (|Hν
max| , |Hμ

max|) = EP

{(
Nmax∑
k=1

1Dν
(ωk)

Nmax
− P [Dν ]

Nmax

)

×
(

Nmax∑
	=1

1Dμ
(ω	)

Nmax
− P [Dμ]

Nmax

)}
.
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Since ωk and ω	 are uncorrelated for k �= � the cross terms are
zero, and we are left with a sum of Nmax expectations

1

N2
max

Nmax∑
k=1

EP

{(
1Dν

(ωk)− P [Dν ]
) (

1Dμ
(ωk)− P [Dμ]

)}
=

1

Nmax
EP

{
(1Dν

− P [Dν ])
(
1Dμ

− P [Dμ]
)}

=
1

Nmax
EP

{
1Dν

1Dμ

}
− P [Dν ]P [Dμ].

If ν = μ, then 1Dν
1Dμ

= 12
Dν

= 1Dν
. On the other hand, if

ν �= μ then 1Dν
1Dμ

= 0 since a photon cannot enter both
detectors at once. The result follows. �

Although {|Hν
max|, ν = 1, . . . ,m} are negatively correlated,

so long as |Hν
j | may be selected independently of Hν

max, the
sets Hν

j are independent. We will always ensure this condition
holds.

Our improvement on fj in (B1) is Fj = (F 1
j , . . . , F

m
j ) where

F ν
j (γ) :=

|Hν
max|

Nmax

1∣∣Hν
j

∣∣ ∑
ωk∈Hν

j

∣∣∣∣dPγ

dP

∣∣∣∣ (ωk). (B2)

Notice that, if P = Pγ , then F ν
j sums |Hν

j | i.i.d. draws from
P[·|Dν ], and each of them scores a hit |Hν

max|/Nmax. In other
words, up to the approximations Pγ ≈ P, and |Hν

max|/Nmax ≈
P[Dν ], F ν

j (γ) sums |Hν
j | random variables, each one recording

the exact solution. Hence, up to these approximations, F ν
j (γ)

computes P[Dν ] with zero variance.
On the practical side, Hν

j ⊂ Hν
j′ , for j < j′, and therefore

the computation of Fj′ is quicker after computation of Fj is
done.

The next theorem shows that the estimates Fj are unbiased.
See [29] for a proof.

Theorem B.1:

EP {Fj(γ)} = Eγ{1D} = Pγ [D].

The following theorem shows that, in the limit where dPγ →
dP and |Hν

max| → ∞, the Fν
j (γ) are uncorrelated zero-variance

estimates of Pγ [Dν ]. Again, see [29] for a proof.
Theorem B.2: As Nmax → ∞,

CovP

(
F ν
j (γ), F

μ
j (γ)

)
→ δμν

P [Dν ]∣∣Hν
j

∣∣
×
∫
Dν

(∣∣∣∣dPγ

dP

∣∣∣∣ (ω)− Pγ [Dν ]

P [Dν ]

)2

dP (ω).

Remark: A similar calculation shows that

CovP

(
fνNj

(γ), fμNj
(γ)
)

=
1

Nj

⎧⎨
⎩
∫
Dν

(∣∣∣dPγ

dP

∣∣∣− Pγ [Dν ]
)

dPγ , ν = μ

−Pγ [Dν ]Pγ [Dμ], ν �= μ.

In the expression for CovP(Fν
j (γ0),Fμ

j (γ0)), one can re-
place |Hν

j | with NjP[Dν ] and see that, if dP ≈ dPγ , then
CovP(Fν

j (γ),Fμ
j (γ)) � CovP(fνj , fμj ). In other words, the vari-

ance of our unbiased estimator Fj is significantly smaller than
the estimator fNj

typically used in aforementioned perturbation
MC schemes.
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